Головка самонаведения виды гсн. Реферат: Радиолокационная Головка Самонаведения

ЗАРУБЕЖНОЕ ВОЕННОЕ ОБОЗРЕНИЕ № 4/2009, стр. 64-68

Полковник Р. ЩЕРБИНИН

В настоящее время в ведущих странах мира ведутся НИОКР, направленные на совершенствование координаторов оптических, оптоэлектронных и радиолокационных головок самонаведения (ГСН) и устройств коррекции систем управления авиационных ракет, бомб и кассет, а также автономных боеприпасов различных классов и назначения.

Координатор - устройство для измерения положения ракеты относительно цели. Следящие координаторы с гироскопической или электронной стабилизацией (головками самонаведения) используются в общем случае для определения угловой скорости линии визирования системы «ракета - подвижная цель», а также угла между продольной осью ракеты и линией визирования и ряда других необходимых параметров. Фиксированные координаторы (без подвижных частей), как правило, входят в состав корреляционно-экстремальных систем наведения на неподвижные наземные цели или используются в качестве вспомогательных каналов комбинированных ГСН.

В ходе проводимых исследований осуществляется поиск прорывных технических и конструктивных решений, разработка новой элементной и технологической базы, совершенствование программного обеспечения, оптимизация массогабаритных характеристик и стоимостных показателей бортовой аппаратуры систем наведения.

При этом основными направлениями совершенствования следящих координаторов определены: создание тепловизионных ГСН, работающих в нескольких участках ИК-диапазона длин волн, в том числе с не требующими глубокого охлаждения оптическими приемниками; практическое применение активных лазерных локационных устройств; внедрение активно-пассивных радиолокационных ГСН с плоской или конформной антенной; создание многоканальных комбинированных ГСН.

В США и ряде других ведущих стран на протяжении последних 10 лет впервые в мировой практике широко внедряются тепловизионные координаторы систем наведения ВТО.

Подготовка к боевому вылету штурмовика А-10 (на переднем плане УРAGM-6SD «Мейверик»)

Американская УР класса «воздух - земля» AGM-158A (программа JASSM)

Перспективная УР класса «воздух - земля» AGM-169

В инфракрасных ГСН оптический приемник состоял из одного или нескольких чувствительных элементов, что не позволяло получать полноценную сигнатуру цели. Тепловизионные ГСН работают на качественно более высоком уровне. В них используются многоэлементные ОП, представляющие собой матрицу из чувствительных элементов, размещаемых в фокальной плоскости оптической системы. Для считывания информации с таких приемников применяется специальное оптико-электронное устройство, определяющее координаты соответствующей части проецируемого на ОП отображения цели по номеру подвергшегося экспозиции чувствительного элемента с последующими усилением, модуляцией получаемых входных сигналов и передачей их в вычислительный блок. Наибольшее распространение получили считывающие устройства с цифровой обработкой изображения и применением волоконной оптики.

Основными преимуществами тепловизионных ГСН являются значительное поле обзора в режиме сканирования, составляющее ± 90° (у инфракрасных ГСН с четырех - восьмиэлементными ОП не более + 75°) и увеличенная максимальная дальность захвата цели (5-7 и 10-15 км соответственно). Кроме того, возможна работа в нескольких участках ИК-диапазона, а также реализация режимов автоматических распознавания цели и выбора точки прицеливания, в том числе в сложных метеоусловиях и ночью. Использование матричного ОП снижает вероятность одновременного поражения всех чувствительных элементов активными системами противодействия.

Тепловизионный координатор цели «Дамаск»

Тепловизионные устройства с неохлаждаемыми приемниками:

А - фиксированный координатор для применения в корреляционных системах

коррекции; Б - следящий координатор; В - камера системы воздушной разведки

Радиолокационная ГСН с плоской фазированной антенной решеткой

Впервые полностью автоматической (не требующей корректирующих команд оператора) тепловизионной ГСН оснащены американские УР класса «воздух - земля» AGM-65D «Мейверик» средней и AGM-158A JASSM большой дальности. Тепловизионные координаторы цели применяются также в составе УАБ. Например, в УАБ GBU-15 используется полуавтоматическая тепловизионная система наведения.

В целях существенного снижения стоимости таких устройств в интересах их массового применения в составе серийно выпускаемых УАБ типа JDAM американскими специалистами был разработан тепловизионный координатор цели «Дамаск». Он предназначен для обнаружения, распознавания цели и коррекции конечного участка траектории УАБ. Данное устройство, выполненное без следящего привода, жестко фиксируется в носовой части бомб и использует штатный источник питания авиабомбы. Основными элементами ТКЦ являются оптическая система, неохлаждаемая матрица чувствительных элементов и электронно-вычислительный блок, обеспечивающие формирование и преобразование изображения.

Активизация координатора производится после сброса УАБ на дальности до цели около 2 км. Автоматический анализ поступающей информации осуществляется в течение 1-2 с со скоростью смены изображения района цели 30 кадр/с. Для распознавания цели применяются корреляционно-экстремальные алгоритмы сравнения получаемого в инфракрасном диапазоне изображения с переведенными в цифровой формат снимками заданных объектов. Они могут быть получены в ходе предварительной подготовки полетного задания с разведывательных спутников или летательных аппаратов, а также непосредственно с использованием бортовых устройств.

В первом случае данные целеуказания вводятся в УАБ во время предполетной подготовки, во втором - от самолетных РЛС или ИК-станции, информация от которых поступает на индикатор тактической обстановки в кабине экипажа. После обнаружения и идентификации цели производится коррекция данных ИСУ. Далее управление осуществляется в обычном режиме без использования координатора. При этом точность бомбометания (КВО) не хуже 3 м.

Аналогичные исследования с целью разработки относительно дешевых тепловизионных координаторов с неохлаждаемыми ОП проводятся рядом других ведущих фирм.

Такие ОП намечено использовать в ГСН, корреляционных системах коррекции и воздушной разведки. Чувствительные элементы матрицы ОП выполнены на основе интерметаллических (кадмия, ртути и теллура) и полупроводниковых (антимонид индия) соединений.

К перспективным оптоэлектронным системам самонаведения относится также активная лазерная ГСН, разрабатываемая фирмой «Локхид-Мартин» для оснащения перспективных УР и автономных боеприпасов.

Например, в составе ГСН экспериментального автономного авиационного боеприпаса LOCAAS применялась лазерная локационная станция, обеспечивающая обнаружение и распознавание целей путем трехмерной высокоточной съемки участков местности и находящихся на них объектов. Для получения трехмерного образа цели без ее сканирования применяется принцип интерферометрии отраженного сигнала. В конструкции ЛЛС используется генератор импульсов лазерного излучения (длина волны 1,54 мкм, частота повторения импульсов 10 Гц-2 кГц, длительность 10-20 не), а в качестве приемника - матрица чувствительных элементов с зарядовой связью. В отличие от прототипов ЛЛС, имевших растровую развертку сканирующего луча, у этой станции больший (до ± 20°) угол обзора, меньшая дисторсия изображения и значительная пиковая мощность излучения. Она сопрягается с аппаратурой автоматического распознавания целей по заложенным в намять бортовой ЭВМ сигнатурам до 50 тыс. типовых объектов.

Во время полета боеприпаса ЛЛС может осуществлять поиск цели в полосе земной поверхности шириной 750 м по курсу полета, а в режиме распознавания эта зона уменьшится до 100 м. При одновременном обнаружении нескольких целей алгоритм обработки изображений обеспечит возможность атаки наиболее приоритетной из них.

По мнению американских специалистов, оснащение ВВС США авиационными боеприпасами с активными лазерными системами, обеспечивающими автоматические обнаружение и распознавание целей с последующим их высокоточным поражением, станет качественно новым шагом в области автоматизации и будет способствовать повышению эффективности нанесения воздушных ударов в ходе ведения боевых действий на ТВД.

Радиолокационные ГСН современных УР применяются, как правило, в системах наведения авиационного оружия средней и большой дальности. Активные и полуактивные ГСН используются в УР класса «воздух - воздух» и противокорабельных ракетах, пассивные ГСН - в ПРР.

Перспективные УР, в том числе комбинированные (универсальные), предназначенные для поражения наземных и воздушных целей (класса «воздух - воздух - земля»), планируется оснащать радиолокационными ГСН с плоскими или конформными фазированными антенными решетками, выполненными с применением технологий визуализизации и цифровой обработки инверсной сигнатуры цели.

Считается, что основными преимуществами ГСН с плоскими и конформными антенными решетками по сравнению с современными координаторами являются: более эффективная адаптивная отстройка от естественных и организованных помех; электронное управление лучом диаграммы направленности с полным отказом от применения подвижных частей со значительным снижением массогабаритных характеристик и потребляемой мощности; более эффективное использование поляриметрического режима и доплеровского обужения луча; увеличение несущих частот (до 35 ГГц) и разрешающей способности, апертуры и поля обзора; снижение влияния свойств радиолокационной проводимости и теплопроводности обтекателя, вызывающих аберрацию и дисторсию сигнала. В таких ГСН возможно также применение режимов адаптивной настройки равносигнальной зоны с автоматической стабилизацией характеристик диаграммы направленности.

Кроме того, одним из направлений совершенствования следящих координаторов является создание многоканальных активно-пассивных ГСН, например тепло-визионно-радиолокационных или тепло-визионно-лазерно-радиолокационных. В их конструкции для уменьшения массогабаритных показателей и стоимости систему сопровождения цели (с гироскопической или электронной стабилизацией координатора) планируется использовать только в одном канале. В остальных ГСН будут применяться фиксированные излучатель и приемник энергии, а для изменения угла визирования намечено задействовать альтернативные технические решения, например, в тепловизионном канале - микромеханическое устройство точной юстировки линз, а в радиолокационном - электронное сканирование луча диаграммы направленности.


Опытные образцы комбинированных активно-пассивных ГСН:

слева - радиолокационно-тепловизионная гиростабилизированная ГСН для

перспективных ракет классов «воздух - земля» и «воздух - воздух»; справа -

активная радиолокационная ГСН с фазированной антенной решеткой и

пассивным тепловизионным каналом

Испытания в аэродинамической трубе разрабатываемой УР SMACM, (на рисунке справа ГСН ракеты)

Комбинированной ГСН с полуактивным лазерным, тепловизионным и активным радиолокационным каналами намечено оснастить перспективную УР JCM. Конструктивно оптоэлектронный блок приемников ГСН и радиолокационная антенна выполнены в единой следящей системе, что обеспечивает их раздельную или совместную работу в процессе наведения. В данной ГСН реализован принцип комбинированного самонаведении в зависимости от типа цели (тепло- или радиоконтрастная) и условий обстановки, в соответствии с которыми автоматически выбирается оптимальный метод наведения в одном из режимов работы ГСН, а остальные задействуются параллельно для формирования контрастного отображения цели при расчете точки прицеливания.

При создании аппаратуры наведения перспективных УР фирмы «Локхид-Мартин» и «Боинг» предполагают использовать имеющиеся технологические и технические решения, полученные в ходе работ по программам LOCAAS и JCM. В частности, в составе разрабатываемых УР SMACM и LCMCM предложено применять различные варианты модернизированной ГСН, установленной на УР AGM-169 класса «возух - земля». Поступление данных ракет на вооружение ожидается не ранее 2012 года.

Бортовая аппаратура системы наведения, комплектуемая этими ГСН, должна обеспечивать выполнение таких задач, как: патрулирование в назначенном районе в течение часа; разведка, обнаружение и поражение установленных целей. По мнению разработчиков, основными достоинствами подобных ГСН являются: повышенная помехозащищенность, обеспечение высокой вероятности попадания УР в цель, возможность применения в сложных помеховых и метеоусловиях, оптимизированные массогабаритные характеристики аппаратуры наведения, сравнительно невысокая стоимость.

Таким образом, осуществляемые в зарубежных странах НИОКР с целью создания высокоэффективных и одновременно недорогих авиационных средств поражения при существенном наращивании разведывательно-информационных возможностей бортовых комплексов как боевой, так и обеспечивающей авиации. позволят значительно повысить показатели боевого применения.

Для комментирования необходимо зарегистрироваться на сайте

БАЛТИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

_____________________________________________________________

Кафедра радиоэлектронных устройств

РАДИОЛОКАЦИОННАЯ ГОЛОВКА САМОНАВЕДЕНИЯ

Санкт-Петербург

2. ОБЩИЕ СВЕДЕНИЯ О РЛГС.

2.1 Назначение

Радиолокационная головка самонаведения устанавливается на ракете класса "земля-воздух" для обеспечения на конечном этапе полета ракеты автоматического захвата цели, ее автосопровождения и выдачи сигналов управления на автопилот (АП) и радиовзрыватель (РБ).

2.2 Технические характеристики

РЛГС характеризуется следующими основными тактико-техническими данными:

1. зона поиска по направлению:

По углу места ± 9°

2. время обзора зоны поиска 1,8 - 2,0 сек.

3. время захвата цели по углу 1,5 сек (не более)

4. маμмальные углы отклонения зоны поиска:

По азимуту ± 50° (не менее)

По углу места ± 25° (не менее)

5. маμмальные углы отклонения равносигнальной зоны:

По азимуту ± 60° (не менее)

По углу места ± 35° (не менее)

6. дальность захвата цели типа самолета ИЛ-28 с выдачей сигналов управления на (АП) при вероятности не ниже 0,5 -19 км, а при вероятности не ниже 0,95 -16 км.

7 зона поиска по дальности 10 - 25 км

8. рабочий диапазон частот f ± 2,5%

9. средняя мощность передатчика 68 Вт

10. длительность ВЧ-импульса 0,9 ± 0,1 мксек

11. период следования ВЧ-импульсов Т ± 5%

12. чувствительность приемных каналов - 98дб (не менее)

13.потребдяема мощность от источников питания:

От сети 115 в 400 Гц 3200 Вт

От сети 36 в 400 Гц 500 Вт

От сети 27 600 Вт

14.вес станции – 245 кг.

3. ПРИНЦИПЫ ДЕЙСТВИЯ И ПОСТРОЕНИЯ РЛГС

3.1 Принцип действия РЛГС

РЛГС представляет собой радиолокационную станцию 3-х сантиметрового диапазона, работающую в режиме импульсного излучения. При самом общем рассмотрении РЛГС может быть разбита на две части: - собственно радиолокационную часть и автоматическую часть, обеспечивающую захват цели, ее автоматическое сопровождение по углу и дальности и выдачу сигналов управления на автопилот и радиовзрыватель.

Радиолокационная часть станции работает обычным образом. Высокочастотные электромагнитные колебания, генерируемые магнетроном в виде очень коротких импульсов, излучаются с помощью остронаправленной антенны, принимаются той же антенной, преобразуются и усиливаются в приемном устройстве, проходят далее в автоматическую часть станции - систему углового сопровождения цели и дальномерное устройство.

Автоматическая часть станции состоит из трех следующих функциональных систем:

1. системы управления антенной, обеспечивающей управление антенной во всех режимах работы РЛГС (в режиме "наведение", в режиме "поиск" и в режиме "самонаведение", который в свою очередь, подразделяется на режимы "захват" и "автосопровождение")

2. дальномерного устройства

3. вычислителя сигналов управления, подаваемых на автопилот и радиовзрыватель ракеты.

Система управления антенной в режиме "автосопровождение" работает по так называемому дифференциальному методу, в связи с чем в станции применена специальная антенна, состоящая из сфероидального зеркала и 4-х излучателей, вынесенных на некоторое расстояние перед зеркалом.

При работе РЛГС на излучение формируется одно-лепестковая диаграмма направленности с маμмумом совпадающим с осью антенной системы. Это достигается за счет разной длины волноводов излучателей - имеется жесткий сдвиг по фазе между колебаниями разных излучателей.

При работе на прием диаграммы направленности излучателей сдвинуты относительно оптической оси зеркала и пересекаются на уровне 0,4.

Связь излучателей с приемопередающим устройством осуществляется через волноводный тракт, в котором имеются два последовательно включенных ферритовых коммутатора:

· коммутатор осей (ФКО), работающий с частотой 125 Гц.

· коммутатор приемников (ФКП), работающий с частотой 62,5 Гц.

Ферритовые коммутаторы осей переключают волноводный тракт таким образом, что сначала подключают к передатчику все 4 излучателя, формируя одно-лепестковую диаграмму направленности, а затем к двухканальному приемнику, то излучатели, создающие две диаграммы направленности, расположенные в вертикальной плоскости, то излучатели, создающие две диаграммы направленности в горизонтальной плоскости. С выходов приемников сигналы попадают на схему вычитания, где в зависимости от положения цели относительно равносигнального направления, образованного пересечением диаграмм направленности данной пары излучателей, вырабатывается разностный сигнал, амплитуда и полярность которого определяется положением цели в пространстве (рис. 1.3).

Синхронно с ферритовым коммутатором осей в РЛГС работает схема выделения сигналов управления антенной, с помощью которой вырабатывается сигнал управления антенной по азимуту и по углу места.

Коммутатор приемников переключает входы приемных каналов с частотой 62,5Гц. Коммутация приемных каналов связана с необходимостью усреднения их характеристик, так как дифференциальный метод пеленгации цели требует полной идентичности параметров обоих приемных каналов. Дальномерное устройство РЛГС представляет собой систему с двумя электронными интеграторами. С выхода первого интегратора снимается напряжение, пропорциональное скорости сближения с целью, с выхода второго интегратора - напряжение, пропорциональное дальности до цели. Дальномер осуществляет захват ближайшей цели в диапазоне 10-25км с последующим ее автосопровождением до дальности 300 метров. На дальности 500 метров с дальномера выдается сигнал, служащий для взвода радио-взрывателя (РВ).

Вычислитель РЛГС является счетно-решающим устройством и служит для Формирования сигналов управления, выдаваемых РЛГС на автопилот (АП) и РВ. На АП подаётся сигнал, представляющий проекции вектора абсолютной угловой скорости луча визирования цели на поперечные оси ракеты. Эти сигналы используются для управления ракетой по курсу и тангажу. На РВ с вычислителя поступает сигнал, представляющий проекцию вектора скорости сближения цели с ракетой на полярное направление луча визирования цели.

Отличительными особенностями РЛГС по сравнению с другими аналогичными ей по своим тактико-техническим данным станциями являются:

1. применение в РЛГС длиннофокусной антенны, характеризующейся тем, что Формирование и отклонение луча осуществляется в ней с помощью отклонения одного довольно легкого зеркала, угол отклонения которого вдвое меньше угла отклонения луча. Кроме того, в такой антенне отсутствуют вращающиеся высокочастотные переходы, что упрощает ее конструкцию.

2. использование приемника с линейно-логарифмической амплитудной характеристикой, что обеспечивает расширение динамического диапазона канала до 80 дб и, тем самым, делает возможным пеленгацию источника активной помехи.

3. построение системы углового сопровождения по дифференциальному методу, обеспечивающему высокую помехозащищенность.

4. применение в станции оригинальной двухконтурной замкнутой схемы компенсации рыскания, обеспечивающей высокую степень компенсации колебаний ракеты относительно луча антенны.

5. конструктивное выполнение станции по так называемому контейнерному принципу, характеризующемуся целым рядом преимуществ в отношении снижения общего веса, использовании отведенного объема, уменьшении межблочных связей, возможности применения централизованной системы охлаждения и т. п.

3.2 Отдельные функциональные системы РЛГС

РЛГС может быть разбита на ряд отдельных функциональных систем, каждая из которых решает вполне определенную частную задачу (или несколько более или менее близких между собой частных задач) и каждая из которых в той или иной мере оформлена в виде отдельной технологической и конструктивной единицы. Таких Функциональных систем в РЛГС четыре:

3.2.1 Радиолокационная часть РЛГС

Радиолокационная часть РЛГС состоит из:

· передатчика.

· приемника.

· высоковольтного выпрямителя.

· высокочастотной части антенны.

Радиолокационная часть РЛГС предназначена:

· для генерирования высокочастотной электромагнитной энергии заданной частоты (f±2,5%) и мощности 60 Вт, которая в виде коротких импульсов (0,9 ± 0,1 мксек) излучается в пространство.

· для последующего приема отраженных от цели сигналов, их преобразования в сигналы промежуточной частоты (Fпч=30 МГц), усиления (по 2-м идентичным каналам), детектирования и выдачи на другие системы РЛГС.

3.2.2. Синхронизатор

Синхронизатор состоит из:

· узла манипуляции приема и синхронизации (МПС-2).

· узла коммутации приемников (КП-2).

· узла управления ферритовыми коммутаторами (УФ-2).

· узла селекции и интегрирования (СИ).

· узла выделения сигнала ошибки (СО)

· ультразвуковой линии задержки (УЛЗ).

· формирование импульсов синхронизации для запуска отдельных схем в РЛГС и импульсов управления приемником, узлом СИ и дальномером (узел МПС-2)

· формирование импульсов управления ферритовым коммутатором осей, ферритовым коммутатором приемных каналов и опорного напряжения (узел УФ-2)

· интегрирование и суммирование принятых сигналов, нормирование напряжения для управления АРУ, преобразование видеоимпульсов цели и АРУ в радиочастотные сигналы (10 МГц) для осуществления задержки их в УЛЗ (узел СИ)

· выделение сигнала ошибки, необходимого для работы системы углового сопровождения (узел СО).

3.2.3. Дальномер

Дальномер состоит из:

· узла временного модулятора (ЕМ).

· узла временного дискриминатора (ВД)

· двух интеграторов.

Назначением этой части РЛГС является:

· поиск, захват и сопровождение цели по дальности с выдачей сигналов дальности до цели и скорости сближения с целью

· выдача сигнала Д-500 м

ОГС предназначена для осуществления захвата и автоматичес­кого сопровождения цели по ее тепловому излучению, измерения угловой скорости линии визирования ракета - цель и формиро­вания управляющего сигнала, пропорционального угловой скоро­сти линии визирования, в том числе и в условиях воздействия ложной тепловой цели (ЛТЦ).

Конструктивно ОГС состоит из координатора 2 (рис. 63) и электронного блока 3. Дополнительным элементом, оформляющим ОГС, является корпус 4. Аэродинамический насадок 1 служит для снижения аэродинамического сопротивления ракеты в полете.

В ОГС применен охлаждаемый фотоприемник, для обеспече­ния требуемой чувствительности которого служит система охлаж­дения 5. В качестве хладагента используется сжиженный газ, получаемый в системе охлаждения из газообразного азота путем дросселирования.

Структурная схема оптической головки самонаведения (рис. 28) состоит из схем следящего координатора и автопилота.

Следящий координатор (СК) осуществляет непрерывное ав­томатическое слежение за целью, формирует сигнал коррекции для совмещения оптической оси координатора с линией визиро­вания и обеспечивает подачу управляющего сигнала, пропорцио­нального угловой скорости линии визирования, в автопилот (АП).

Следящий координатор состоит из координатора, электрон­ного блока, системы коррекции гироскопа и гироскопа.

Координатор состоит из объектива, двух фотоприемников (ФПок и ФПвк) и двух предусилителсй электрических сигналов (ПУок и ПУвк). В фокальных плоскостях основного и вспомогательного спектральных диапазонов объектива координатора на­ходятся соответственно фотоприемники ФПок и ФПвк с радиально расположенными относительно оптической оси растрами определенной конфигурации.

Объектив, фотоприемники, предусилители закреплены на ро­торе гироскопа и вращаются вместе с ним, причем оптическая ось объектива совпадает с осью собственного вращения ротора ги­роскопа. Ротор гироскопа, основную массу которого составляет постоянный магнит, установлен в кардановом подвесе, позволяющем ему отклоняться от продольной оси ОГС на угол пеленга в любом направлении относительно двух взаимно перпендикуляр­ных осей. При вращении ротора гироскопа происходит обзор про­странства в пределах поля зрения объектива в обоих спектраль­ных диапазонах с помощью фоторезисторов.


Изображения удаленного источника излучения расположены в фокальных плоскостях обоих спектров оптической системы в виде пятен рассеяния. Если направление на цель совпадает с оптичес­кой осью объектива, изображение фокусируется в центр поля зрения ОГС. При появлении углового рассогласования между осью объектива и направлением на цель пятно рассеяния смещается. При вращении ротора гироскопа фоторезисторы засвечиваются на время прохождения пятна рассеяния над фоточувствительным слоем. Такая импульсная засветка преобразуется фоторезистора­ми в электрические импульсы, длительность которых зависит от величины углового рассогласования, причем с увеличением рассо­гласования при выбранной форме растра длительность их умень­шается. Частота следования импульсов равна частоте вращения фоторезистора.

Рис. 28. Структурная схема оптической головки самонаведения

Сигналы с выходов фотоприемников ФПок и ФПвк поступают соответственно на предусилители ПУок и ПУвк, которые связаны общей системой автоматического регулирования усиления АРУ1, работающей по сигналу с ПУок. Этим обеспечивается постоянство отношения величин и сохранение формы выходных сигналов пред-усилителей в требуемом диапазоне изменения мощности прини­маемого ОГС излучения. Сигнал с ПУок поступает на схему пере­ключения (СП), предназначенную для защиты от ЛТЦ и фоновых помех. Защита от ЛТЦ основана на разных значениях температур излучения от реальной цели и ЛТЦ, определяющих различие в положении максимумов их спектральных характеристик.

На СП поступает также сигнал с ПУвк, содержащий информа­цию о помехах. Отношение величины излучения от цели, прини­маемого вспомогательным каналом, к величине излучения от це­ли, принимаемого основным каналом, будет меньше единицы, и сигнал от ЛТЦ на выход СП не проходит.

В СП для цели формируется пропускной строб; выделенный на СП сигнал от цели поступает на избирательный усилитель и амплитудный детектор. Амплитудный детектор (АД) выделяет сигнал, амплитуда первой гармоники которого зависит от углово­го рассогласования между оптической осью объектива и направ­лением на цель. Далее сигнал проходит через фазовращатель, ко­торый компенсирует запаздывание сигнала в электронном блоке, и поступает на вход усилителя коррекции, усиливающего сигнал по мощности, что необходимо для осуществления коррекции гиро­скопа и подачи сигнала в АП. Нагрузкой усилителя коррекции (УК) служат обмотки коррекции и последовательно соединенные с ними активные сопротивления, сигналы с которых поступают в АП.

Наводимое в катушках коррекции электромагнитное поле взаи­модействует с магнитным полем магнита ротора гироскопа, вы­нуждая его прецессировать в сторону уменьшения рассогласова­ния между оптической осью объектива и направлением на цель. Таким образом, осуществляется слежение ОГС за целью.

При малых расстояниях до цели увеличиваются воспринимае­мые ОГС размеры излучения от цели, что приводит к изменению характеристик импульсных сигналов с выхода фотоприемников, из-за чего ухудшается способность слежения ОГС за целью. Для исключения этого явления в электронном блоке СК предусмотре­на схема ближней зоны, обеспечивающая слежение за энергети­ческим центром реактивной струи и сопла.

Автопилот выполняет следующие функции:

Фильтрацию сигнала с СК для повышения качества сигнала управления ракетой;

Формирование сигнала на разворот ракеты на начальном уча­стке траектории для автоматического обеспечения необходимых углов возвышения и упреждения;

Преобразование сигнала коррекции в сигнал управления на частоте управления ракеты;

Формирование команды управления на рулевом приводе, работающем в релейном режиме.

Входными сигналами автопилота являются сигналы усилителя коррекции, схемы ближней зоны и пеленговой обмотки, а выходным сигналом - сигнал с двухтактного усилителя мощности, на­грузкой которого являются обмотки электромагнитов золотниково­го распределителя рулевой машинки.

Сигнал усилителя коррекции проходит через последовательно соединенные синхронный фильтр и динамический ограничитель и поступает на вход сумматора ∑І. Сигнал с пеленговой обмотки поступает на схему ФСУР по пеленгу. Он необходим на началь­ном участке траектории для сокращения времени выхода на ме­тод наведения и задания плоскости наведения. Выходной сигнал с ФСУР поступает на сумматор ∑І.

Сигнал с выхода сумматора ∑І, частота которого равна часто­те вращения ротора гироскопа, поступает на фазовый детектор. Опорным сигналом фазового детонатора является сигнал с об­мотки ГОН. Обмотка ГОН устанавливается в ОГС таким обра­зом, чтобы ее продольная ось лежала в плоскости, перпендику­лярной продольной оси ОГС. Частота наводимого в обмотке ГОН сигнала равна сумме частот вращения гироскопа и ракеты. По­этому одной из составляющих выходного сигнала фазового детек­тора является сигнал на частоте вращения ракеты.

Выходной сигнал фазового детектора поступает на фильтр, на входе которого суммируется с сигналом генератора линеаризации в сумматоре ∑ІІ. Фильтр подавляет высокочастотные составляю­щие сигнала с фазового детектора и уменьшает нелинейные иска­жения сигнала генератора линеаризации. Выходной сигнал с филь­тра подастся на усилитель-ограничитель с большим коэффициен­том усиления, на второй вход которого поступает сигнал с датчи­ка угловых скоростей ракеты. С усилителя-ограничителя сигнал поступает на усилитель мощности, нагрузкой которого являются обмотки электромагнитов золотникового распределителя рулевой машинки.

Система арретирования гироскопа предназначена для согласо­вания оптической оси координатора с визирной осью прицельно­го устройства, которая составляет заданный угол с продольной осью ракеты. В связи с этим при прицеливании цель будет нахо­диться в поле зрения ОГС.

Датчиком отклонения оси гироскопа от продольной оси раке­ты является пеленговая обмотка, продольная ось которой совпа­дает с продольной осью ракеты. В случае отклонения оси гиро­скопа от продольной оси пеленговой обмотки амплитуда и фаза наводимой в ней ЭДС однозначно характеризуют величину и на­правление угла рассогласования. Встречно с пеленговой обмоткой включена обмотка заклона, расположенная в блоке датчиков пус­ковой трубы. Наводимая в обмотке заклона ЭДС по величине про­порциональна углу между визирной осью прицельного устройства и продольной осью ракеты.

Разностный сигнал с обмотки заклона и пеленговой обмотки, усиленный по напряжению и мощности в следящем координаторе, поступает в обмотки коррекции гироскопа. Под воздействием мо­мента со стороны системы коррекции гироскоп прецессирует в сторону уменьшения угла рассогласования с визирной осью при­цельного устройства и арретируется в этом положении. Разарретирование гироскопа осуществляется АРП при переводе ОГС в ре­жим слежения.

Для поддержания скорости вращения ротора гироскопа в тре­буемых пределах служит система стабилизации оборотов.

Рулевой отсек

Рулевой отсек включает в себя аппаратуру управления поле­том ракеты. В корпусе рулевого отсека размещены рулевая ма­шинка 2 (рис. 29) с рулями 8, бортовой источник питания, состоящий из турбогенератора 6 и стабилизатора-выпрямителя 5, датчик 10 угловых скоростей, усилитель /, пороховой аккумулятор 4 да­вления, пороховой управляющий двигатель 3, розетка 7 (с блоком взведения) и дестабилизатор


Рис. 29. Рулевой отсек: 1 - усилитель; 2 - рулевая машинка; 3 - управляющий двигатель; 4 - аккумулятор давле­ния; 5 - стабилизатор-выпрямитель; 6 - турбогенератор; 7 - розетка; 8 - рули (пласти­ны); 9 - дестабилизатор; 10 - датчик угловых скоростей


Рис. 30. Рулевая машинка:

1 - выводные концы катушек; 2 - корпус; 3 - фиксатор; 4 - обойма; 5 - фильтр; 6 - рули; 7 - стопор; 8 - стойка; 9 - подшипник; 10 и 11 - пружины; 12 - поводок; 13 - сопло; 14 - газораспределительная втулка; 15 - золотник; 16 - втулка; 17 - правая катушка; 18 - якорь; 19 - поршень; 20 - левая катушка; Б и В - каналы


Рулевая машинка предназначена для аэродинамического уп­равления ракетой в полете. Одновременно РМ служит распреде­лительным устройством в системе газодинамического управления ракетой на начальном участке траектории, когда аэродинамичес­кие рули неэффективны. Она является газовым усилителем управ­ляющих электрических сигналов, формируемых ОГС.

Рулевая машинка состоит из обоймы 4 (рис. 30), в приливах которой расположены рабочий цилиндр с поршнем 19 и фильтр 5 тонкой очистки. В обойму запрессован корпус 2 с золотниковым распределителем, состоящим из четырехкромочного золотника 15, двух втулок 16 и якорей 18. В корпусе размещены две катушки 17 и 20 электромагнитов. Обойма имеет две проушины, в кото­рых на подшипниках 9 расположена стойка 8 с пружинами (рес­сорой) и с напрессованным на нее поводком 12. В пазах поводка и стойки расположены рули 6, которые в полете удерживаются в раскрытом положении стопорами 7 и пружинами 10 и 11. В при­ливе обоймы между проушинами размещается газораспредели­тельная втулка 14, жестко закрепленная с помощью фиксатора 3 на стойке. На втулке имеется паз с отсечными кромками для подвода газа, поступающего от ПУД к каналам Б, В и соп­лам 13.

РМ работает от газов ПАД, которые по трубе через фильтр тонкой очистки поступают к золотнику и от него по каналам в кольцах, корпусе и обойме под поршень. Командные сигналы с ОГС поступают поочередно в катушки электромагнитов РМ. При прохождении тока через правую катушку 17 электромагнита якорь 18 с золотником притягиваются в сторону этого электромагнита и открывают проход газа в левую полость рабочего цилиндра под поршень. Под давлением газа поршень перемещается в крайнее правое положение до упора в крышку. Перемещаясь, поршень ув­лекает за собой выступ поводка и поворачивает поводок и стойку, а вместе с ними и рули в крайнее положение. Одновременно по­ворачивается и газораспределительная втулка, при этом отсечная кромка открывает доступ газа от ПУД через канал к соответствующему соплу.

При прохождении тока через левую катушку 20 электромагни­та поршень перемещается в другое крайнее положение.

В момент переключения тока в катушках, когда усилие, созда­ваемое пороховыми газами, превышает силу притяжения электро­магнита, золотник под действием силы от пороховых газов пере­мещается, причем перемещение золотника начинается раньше, чем происходит нарастание тока в другой катушке, что повышает быстродействие РМ.

Бортовой источник питания предназначен для электропитания аппаратуры ракеты в полете. Источником энергии для него яв­ляются газы, образующиеся при сгорании заряда ПАД.

БИП состоит из турбогенератора и стабилизатора-выпрямите­ля. Турбогенератор состоит из статора 7 (рис. 31), ротора 4, на оси которого крепится турбинка 3, являющаяся его приводом.

Стабилизатор-выпрямитель выполняет две функции:

Преобразует напряжение переменного тока турбогенератора в требуемые значения постоянных напряжений и поддерживает их стабильность при изменениях скорости вращения ротора турбоге­нератора и тока нагрузки;

Регулирует скорость вращения ротора турбогенератора при изменении давления газа на входе в сопло путем создания допол­нительной электромагнитной нагрузки на валу турбинки.


Рис. 31. Турбогенератор:

1 - статор; 2 - сопло; 3 - турбинка; 4 – ротор

БИП работает следующим образом. Пороховые газы от сго­рания заряда ПАД через сопло 2 подаются на лопатки турбинки 3 и приводят ее во вращение вместе с ротором. При этом в об­мотке статора индуктируется переменная ЭДС, которая подается на вход стабилизатора-выпрямителя. С выхода стабилизатора-выпрямителя постоянное напряжение подается в ОГС и усили­тель ДУС. На электровоспламенители ВЗ и ПУД напряжение с БИП поступает после выхода ракеты из трубы и раскрытия ру­лей РМ.

Датчик угловых скоростей предназначен для формирования электрического сигнала, пропорционального угловой скорости ко­лебаний ракеты относительно ее поперечных осей. Этот сигнал используется для демпфирования угловых колебаний ракеты в по­лете, ДУС представляет собой состоящую из двух обмоток рамку 1 (рис. 32), которая на полуосях 2 подвешена в центровых винтах 3 с корундовыми подпятниками 4 и может прокачиваться в рабочих зазорах магнитной цепи, состоящей из основания 5, по­стоянного магнита 6 и башмаков 7. Съем сигнала с чувствитель­ного элемента ДУС (рамки) осуществляется через гибкие безмоментные растяжки 8, распаянные на контакты 10 рамки и контак­ты 9, электрически изолированные от корпуса.


Рис. 32. Датчик угловых скоростей:

1 - рамка; 2 - полуось; 3 - центровой винт; 4 - подпятник; 5 - основание; 6 - магнит;

7 - башмак; 8 - растяжка; 9 и 10 - контакты; 11 - кожух

ДУС устанавливается так, чтобы его ось Х-Х совпадала с продольной осью ракеты. При вращении ракеты только вокруг продольной оси рамка под действием центробежных сил устанав­ливается в плоскости, перпендикулярной оси вращения ракеты.

Перемещение рамки в магнитом поле не происходит. ЭДС в ее обмотках не наводится. При наличии колебаний ракеты относи­тельно поперечных осей происходит перемещение рамки в магнит­ном поле. Наводимая при этом в обмотках рамки ЭДС пропор­циональна угловой скорости колебаний ракеты. Частота ЭДС со­ответствует частоте вращения вокруг продольной оси, а фаза сиг­нала - направлению вектора абсолютной угловой скорости ра­кеты.


Пороховой аккумулятор давления предназначен для питания пороховыми газами РМ и БИП. ПАД состоит из корпуса 1, (рис. 33), представляющего собой камеру сгорания, и фильтра 3, в котором происходит очистка газа от твердых частиц. Расход газа и параметры внутренней баллистики определяются отверстием дросселя 2. Внутри корпуса размещаются пороховой заряд 4 и вос­пламенитель 7, состоящий из электровоспламенителя 8, навески 5 пороха и пиротехнической петарды 6.

Рис. 34. Пороховой управляющий двигатель:

7 - переходник; 3 - корпус; 3 - пороховой заряд; 4 - навеска пороха; 5 - пиро­техническая петарда; 6 - электровоспламенитель; 7 - воспламенитель

ПАД работает следующим образом. Электрический импульс с электронного блока пускового механизма поступает на электровоспламенитель, воспламеняющий навеску пороха и пиротехничес­кую петарду, от форса пламени которых воспламеняется порохо­вой заряд. Образующиеся при этом пороховые газы очищаются в фильтре, после чего поступают в РМ и турбогенератор БИП.

Пороховой управляющий двигатель предназначен для газоди­намического управления ракетой на начальном участке траектории полета. ПУД состоит из корпуса 2 (рис. 34), представляющего со­бой камеру сгорания, и переходника 1. Внутри корпуса размеща­ются пороховой заряд 3 и воспламенитель 7, состоящий из элек-тровоспламенителя 6, навески 4 пороха и пиротехнической петар­ды 5. Расход газа и параметры внутренней баллистики определя­ются дроссельным отверстием в переходнике.

ПУД работает следующим образом. После вылета ракеты из пусковой трубы и раскрытия рулей РМ электрический импульс с конденсатора взведения поступает на электровоспламенитель, вос­пламеняющий навеску пороха и петарду, от форса пламени которых загорается пороховой заряд. Пороховые газы, проходя через распределительную втулку и два сопла, расположенные перпенди­кулярно плоскости рулей РМ, создают управляющее усилие, обес­печивающее разворот ракеты.

Розетка осуществляет электрическую связь ракеты с пусковой трубой. Она имеет основные и контрольные контакты, размыка­тель для подключения конденсаторов С1 и С2 блока взведения к электровоспламепителям ВЗ (ЭВ1) и ПУД, а также для комму­тации плюсового вывода БИП к ВЗ после вылета ракеты из трубы и раскрытия рулей РМ.


Рис. 35. Схема блока взведения:

1 - размыкатель

Размещенный в корпусе розетки блок взведения состоит из конденсаторов С1 и С2 (рис. 35), резисторов R3 и R4 для снятия остаточного напряжения с конденсаторов после проведения про­верок или несостоявшегося пуска, резисторов R1 и R2 для ограни­чения тока в цепи конденсаторов и диода Д1, предназначенного для электрической развязки цепей БИП и ВЗ. Напряжение на блок взведения подается после перевода пускового крючка ПМ в положение до упора.

Дестабилизатор предназначен для обеспечения перегрузок, тре­буемой устойчивости и создания дополнительного крутящего мо­мента, в связи с чем его пластины установлены под углом к про­дольной оси ракеты.

Боевая часть

Боевая часть предназначена для поражения воздушной цели или нанесения ей повреждений, приводящих к невозможности вы­полнения боевой задачи.

Поражающим фактором БЧ являются фугасное действие удар­ной волны продуктов взрывчатого вещества БЧ и остатков топли­ва ДУ, а также осколочное действие элементов, образующихся при взрыве и дроблении корпуса.

БЧ состоит из собственно боевой части, контактного взрывате­ля и взрывного генератора. БЧ является несущим отсеком ракеты и выполнена в виде неразъемного соединения.

Собственно БЧ (осколочно-фугасного действия) предназначена для создания заданного поля поражения, воздействующего на цель после получения от ВЗ инициирующего импульса. Она сос­тоит из корпуса 1 (рис. 36), боевого заряда 2, детонатора 4, ман­жеты 5 и трубки 3, через которую проходят провода от ВЗ к рулевому отсеку ракеты. На корпусе имеется бугель Л, в отверстие которого входит стопор трубы, предназначенный для фиксации в ней ракеты.


Рис. 36. Боевая часть:

БЧ - собственно боевая часть; ВЗ - взрыватель; ВГ - взрывной генератор: 1- корпус;

2 - боевой заряд; 3 - трубка; 4 - детонатор; 5 - манжета; А - бугель

Взрыватель предназначен для выдачи детонационного импуль­са на подрыв заряда БЧ при попадании ракеты в цель или по ис­течении времени самоликвидации, а также для передачи детона­ционного импульса от заряда боевой части к заряду взрывного генератора.

Взрыватель электромеханического типа имеет две ступени предохранения, которые снимаются в полете, чем обеспечивается бе­зопасность эксплуатации комплекса (пуск, техническое обслужи­вание, транспортирование и хранение).

Взрыватель состоит из предохранительно-детонирующего уст­ройства (ПДУ) (рис. 37), механизма самоликвидации, трубки, конденсаторов С1 и С2, основного датчика цели ГМД1 (импульс­ного вихревого магнитоэлектрического генератора), дублирующего датчика цели ГМД2 (импульсного волнового магнитоэлектричес­кого генератора), пускового электровоспламенителя ЭВ1, двух боевых электровоспламенителей ЭВ2 и ЭВЗ, пиротехнического за­медлителя, инициирующего заряда, капсюля-детонатора и дето­натора взрывателя.

ПДУ служит для обеспечения безопасности в обращении с взрывателем до момента взведения его после пуска ракеты. Оно включает в себя пиротехнический предохранитель, поворотную втулку и блокирующий стопор.

Детонатор взрывателя служит для подрыва БЧ. Датчики цели ГМД 1 и ГМД2 обеспечивают срабатывание капсюля-детонатора при попадании ракеты в цель, а механизм самоликвидации - сра­батывание капсюля-детонатора по истечении времени самоликви­дации в случае промаха. Трубка обеспечивает передачу импуль­са от заряда боевой части к заряду взрывного генератора.

Взрывной генератор-предназначен для подрыва несгоревшей части маршевого заряда ДУ и создания дополнительного поля по­ражения. Он представляет собой расположенную в корпусе взры­вателя чашку с запрессованным в ней составом взрывчатого ве­щества.

Взрыватель и боевая часть при пуске ракеты работают следу­ющим образом. При вылете ракеты из трубы раскрываются ру­ли РМ, при этом замыкаются контакты размыкателя розетки и напряжение с конденсатора С1 блока взведения поступает на электровоспламенитель ЭВ1 взрывателя, от которого одновремен­но зажигаются пиротехнический предохранитель ПДУ и пиротех­ническая запрессовка механизма самоликвидации.


Рис. 37. Структурная схема взрывателя

В полете под воздействием осевого ускорения от работающе­го маршевого двигателя блокирующий стопор ПДУ оседает и не препятствует развороту поворотной втулки (снята первая ступень предохранения). Через 1-1,9 с после пуска ракеты прогорает пи­ротехнический предохранитель, пружина разворачивает поворотную втулку в боевое положение. При этом ось капсюля-детонато­ра совмещается с осью детонатора взрывателя, контакты поворот­ной втулки замыкаются, взрыватель подключается к БИП ракеты (снята вторая ступень предохранения) и готов к действию. В то же время продолжает гореть пиротехническая запрессовка меха­низма самоликвидации, а БИП подпитывает конденсаторы С1 и С2 взрывателя на всем. протяжении полета.

При попадании ракеты в цель в момент прохождения взрыва­теля через металлическую преграду (при ее пробитии) или вдоль нее (при рикошете) в обмотке основного датчика цели ГМД1 под воздействием вихревых токов, наводимых в металлической пре­граде при перемещении постоянного магнита датчика цели ГМД1, возникает импульс электрического тока. Этот импульс подается на электровоспламенитель ЭВЗ, от луча которого срабатывает капсюль-детопатор, вызывая действие детонатора взрывателя. Дето­натор взрывателя инициирует детонатор боевой части, срабатыва­ние которого вызывает разрыв боевого заряда БЧ и взрывчатого вещества в трубке взрывателя, передающей детонацию к взрыв­ному генератору. При этом происходит срабатывание взрывного генератора и подрыв остатков топлива ДУ (при их наличии).

При попадании ракеты в цель срабатывает также дублирую­щий датчик цели ГМД2. Под воздействием воли упругих дефор­маций, имеющих место при встрече ракеты с преградой, якорь датчика цели ГМД2 отрывается, происходит разрыв магнитной цепи, в результате чего в обмотке наводится импульс электричес­кого тока, который подается на электровоспламенитель ЭВ2. От луча огня электровоспламенителя ЭВ2 зажигается пиротехничес­кий замедлитель, время горения которого превышает время, не­обходимое для подхода основного датчика цели ГМД1 к прегра­де. После прогорания замедлителя срабатывает инициирующий заряд, вызывая срабатывание капсюля-детонатора и детонатора БЧ, подрыв БЧ и остатков топлива ДУ (при их наличии).

В случае промаха ракеты по цели после прогорания пиротех­нической запрессовки механизма самоликвидации от луча огня срабатывает капсюль-детонатор, вызывая действие детонатора и подрыв БЧ боевой части с взрывным генератором для самоликви­дации ракеты.

Двигательная установка

Твердотопливная ДУ предназначена для обеспечения вылета ракеты из трубы, придания ей необходимой угловой скорости вра­щения, разгона до маршевой скорости и поддержания этой ско­рости в полете.

ДУ состоит из стартового двигателя, двухрежимного однока­мерного маршевого двигателя и лучевого воспламенителя замед­ленного действия.

Стартовый двигатель предназначен для обеспечения вылета ра­кеты из трубы и придания ей необходимой угловой скорости вращения. Стартовый двигатель состоит из камеры 8 (рис. 38), стартового заряда 6, воспламенителя 7 стартового заряда, диа­фрагмы 5, диска 2, газоподводящей трубки 1 и соплового блока 4. Стартовый заряд состоит из трубчатых пороховых шашек (или монолита), свободно установленных в кольцевом объеме камеры. Воспламенитель стартового заряда состоит из корпуса, в котором размещены электровоспламенитель и навеска пороха. Диск и диафрагма обеспечивают крепление заряда при работе и тран­спортировании.

Стартовый двигатель стыкуется к сопловой части маршевого двигателя. При стыковке двигателей газоподводящая трубка на­девается на корпус лучевого воспламенителя 7 (рис. 39) замед­ленного действия, расположенного в предсопловом объеме марше­вого двигателя. Такое соединение обеспечивает передачу огневого импульса на лучевой воспламенитель. Электрическая связь вос­пламенителя стартового двигателя с пусковой трубой осуществля­ется через контактную связь 9 (рис. 38).



Рис. 38. Стартовый двигатель:

1 - газоподводящая трубка; 2 - диск; 3 - заглушка; 4 - сопловой блок; 5 - диафрагма; 6 - стартовый заряд; 7 - воспламенитель стартового заря­да; 8 -камера; 9 - контактная связь

Сопловой блок имеет семь (или шесть) расположенных под углом к продольной оси ракеты сопел, обеспечивающих вращение ракеты на участке работы стартового двигателя. Для обеспече­ния герметичности камеры ДУ при эксплуатации и создания не­обходимого давления при воспламенении стартового заряда в соп­ла установлены заглушки 3.

Двухрежимный однокамерный маршевый двигатель предназ­начен для обеспечения разгона ракеты до маршевой скорости на первом режиме и поддержания этой скорости в полете на втором режиме.

Маршевый двигатель состоит из камеры 3 (рис. 39), маршево­го заряда 4, воспламенителя 5 маршевого заряда, соплового блока 6 и лучевого воспламенителя 7 замедленного действия. В пе­реднюю часть камеры ввинчивается дно 1 с посадочными местами для стыковки ДУ и БЧ. Для получения требуемых режимов горе­ния заряд частично забронирован и армирован шестью проволоч­ками 2.


1 – дно; 2 – проволочки; 3 – камера; 4 – маршевый заряд; 5 – воспламенитель маршевого заряда; 6 – сопловой блок; 7 – лучевой воспламенитель замедленного действия; 8 – заглушка; А – резьбовое отверстие

Рис. 40. Лучевой воспламенитель замедленного действия: 1 - пиротехнический замедлитель; 2 - корпус; 3 - втулка; 4 - передаточный заряд; 5 - детон. заряд


Рис. 41. Крыльевой блок:

1 - пластина; 2 - передний вкладыш; 3 - корпус; 4 - ось; 5 - пру­жина; 6 - стопор; 7 - винт; 8 - задний вкладыш; Б - выступ

Для обеспечения, герметичности камеры при эксплуатации и создания необходимого давления при воспламенении маршевого заряда на сопловом блоке установлена заглушка 8, которая раз­рушается и сгорает от пороховых газов маршевого двигателя. На внешней части соплового блока имеются резьбовые отверстия А для крепления крыльевого блока к ДУ.

Лучевой воспламенитель замедленного действия предназначен для обеспечения срабатывания маршевого двигателя на безопас­ном для стрелка-зенитчика расстоянии. За время его сгорания, равное 0,33 - 0,5 с, ракета удаляется от стрелка-зенитчика на рас­стояние не менее 5,5 м. Это предохраняет стрелка-зенитчика от воздействия струи пороховых газов маршевого двигателя.

Лучевой воспламенитель замедленного действия состоит из корпуса 2 (рис. 40), в котором размещены пиротехнический за­медлитель 1, передаточный заряд 4 во втулке 3. С другой сторо­ны во втулку запрессован детонирующий заряд 5. От пороховых газов, образующихся в камере стартового двигателя при горении заряда, воспламеняется детонирующий заряд. Ударная волна, образующаяся при детонации, передается через стенку втулки и воспламеняет передаточный заряд, от которого зажигается пиро­технический замедлитель. Через время задержки от пиротехниче­ского замедлителя загорается воспламенитель маршевого заряда, который воспламеняет маршевый заряд.

ДУ работает следующим образом. При подаче электрического импульса на электровоспламенитель стартового заряда срабаты­вает воспламенитель, а затем стартовый заряд. Под воздействием реактивной силы, создаваемой стартовым двигателем, ракета вы­летает из трубы с необходимой угловой скоростью вращения. Стартовый двигатель заканчивает работу в трубе и задерживается в ней. От пороховых газов, образовавшихся в камере стартового двигателя, срабатывает лучевой воспламенитель замедленного действия, поджигающий воспламенитель маршевого заряда, от которого на безопасном для стрелка-зенитчика расстоянии сраба­тывает маршевый заряд. Реактивная сила, создаваемая марше­вым двигателем, разгоняет ракету до маршевой скорости и под­держивает эту скорость в полете.

Крыльевой блок

Крыльевой блок предназначен для аэродинамической стабили­зации ракеты в полете, создания подъемной силы при наличии углов атаки и поддержания требуемой скорости вращения ракеты на траектории.

Крыльевой блок состоит из корпуса 3 (рис. 41), четырех скла­дывающихся крыльев и механизма их стопорения.

Складывающееся крыло состоит из пластины 7, которая кре­пится двумя винтами 7 к вкладышам 2 и 8, надетым на ось 4, размещенную в отверстии корпуса.

Механизм стопорения состоит из двух стопоров 6 и пружины 5, с помощью которой стопоры разжимаются и запирают крыло при раскрытии. После вылета вращающейся ракеты из трубы под действием центробежных сил крылья раскрываются. Для поддержания требуемой скорости вращения ракеты в полете крылья развернуты относительно продольной оси крыльевого бло­ка на определенный угол.

Крыльевой блок винтами крепится на сопловом блоке марше­вого двигателя. На корпусе крыльевого блока имеется четыре вы­ступа Б для соединения его со стартовым двигателем с помощью разжимного соединительного кольца.



Рис. 42. Труба 9П39(9П39-1*)

1 - передняя крышка; 2 и 11- замки; 3 - блок датчиков; 4 - антенна; 5 - обоймы; 6 и 17 – крышки; 7 – диафрагма; 8 – плечевой ремень; 9 – обойма; 10 – труба; 12 - задняя крышка; 13 - лампа; 14 - винт; 15 - колодка; 16 - рычаг механизма накала; 18. 31 и 32 – пружины; 19 38 – фиксаторы; 20 – разъем; 21 – задняя стойка; 22 - механизм бортразъема; 23 - ручка; 24 - передняя стойка; 25 - обтекатель; 26 - насадок; 27 – плата; 28 – штырьевые контакты; 29 – направляющие штыри; 30 - стопор; 33 - тяга; 34 - вилка; 35 - корпус; 36 - кнопка; 37 - проушина; А и Е - метки; Б и М – отверстия; В – мушка; Г – целик; Д – треугольная метка; Ж – вырез; И – направляющие; К - скос; Л и У - поверхности; Д - паз; Р и С – диаметры; Ф – гнезда; Ш – плата; Щ и Э – прокладка; Ю – накладка; Я – амортизатор;

*) Примечание:

1. В эксплуатации могут находится два варианта труб: 9П39 (с антенной 4) и 9П39-1 (без антенны 4)

2. В эксплуатации могут находится 3 варианта механических прицела с лампой световой информации

И др.) для обеспечения прямого попадания в объект атаки или сближение на расстояние, меньшее радиуса поражения боевой части средства поражения (СП), то есть для обеспечения высокой точности наведения на цель. ГСН является элементом системы самонаведения .

СП, оборудованное ГСН, может «видеть» «подсвеченную» носителем или ей самой, излучающую или контрастную цель и самостоятельно наводиться на неё, в отличие от ракет, наводимых командным способом.

Виды ГСН

  • РГС (РГСН) - радиолокационная ГСН:
    • АРГСН - активная РГС, имеет на борту полноценную РЛС , может самостоятельно обнаруживать цели и наводиться на них. Применяется в ракетах классов «воздух-воздух», «земля-воздух», противокорабельных;
    • ПАРГСН - полуактивная РГС, ловит сигнал РЛС сопровождения, отражённый от цели. Применяется в ракетах классов «воздух-воздух», «земля-воздух»;
    • Пассивная РГСН - наводится на излучение цели. Применяется в противорадиолокационных ракетах, а также в ракетах, наводящихся на источник активных помех.
  • ТГС (ИКГСН) - тепловая, инфракрасная ГСН. Применяется в ракетах классов «воздух-воздух», «земля-воздух», «воздух-земля».
  • ТВ-ГСН - телевизионная ГСН. Применяется в ракетах класса «воздух-земля», некоторых ракетах класса «земля-воздух».
  • Лазерная ГСН. Применяется в ракетах «воздух-земля», «земля-земля», авиабомбах.

Разработчики и производители ГСН

В Российской Федерации производство головок самонаведения различных классов сосредоточено на ряде предприятий военно-промышленного комплекса. В частности, активные головки самонаведения для ракет малой и средней дальности класса «воздух-воздух» серийно выпускаются во ФГУП «НПП „Исток“» (г. Фрязино Московской области).

Литература

  • Военный энциклопедический словарь / Пред. Гл. ред. комиссии: С. Ф. Ахромеев . - 2-е изд. - М .: Воениздат , 1986. - 863 с. - 150 000 экз. - ISBN , ББК 68я2, В63
  • Куркоткин В. И., Стерлигов В. Л. Самонаведение ракет. - М .: Воениздат , 1963. - 92 с. - (Ракетная техника). - 20 000 экз. - ISBN 6 Т5.2, К93

Ссылки

  • Полковник Р. Щербинин Головки самонаведения перспективных зарубежных управляемых ракет и авиабомб // Зарубежное военное обозрение . - 2009. - № 4. - С. 64-68. - ISSN 0134-921X .

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Головка самонаведения" в других словарях:

    Устройство на управляемых носителях боевых зарядов (ракетах, торпедах и др.) для обеспечения прямого попадания в объект атаки или сближения на расстояние, меньшее радиуса поражения зарядов. Головка самонаведения воспринимает энергию, излучаемую… … Морской словарь

    Автоматическое устройство, устанавливаемое в управляемых ракетах, торпедах, бомбах и др. для обеспечения высокой точности наведения на цели. По виду воспринимаемой энергии делятся на радиолокационные, оптические, акустические и др … Большой Энциклопедический словарь

    - (ГСН) автоматическое измерительное устройство, устанавливаемое на самонаводящихся ракетах и предназначенное для выделения цели на окружающем фоне и измерения параметров относительного движения ракеты и цели, используемых для формирования команд… … Энциклопедия техники

    Автоматическое устройство, устанавливаемое в управляемых ракетах, торпедах, бомбах и др. для обеспечения высокой точности наведения на цели. По виду воспринимаемой энергии делятся на радиолокационные, оптические, акустические и др. * * * ГОЛОВКА… … Энциклопедический словарь

    головка самонаведения - nusitaikymo galvutė statusas T sritis radioelektronika atitikmenys: angl. homing head; seeker vok. Zielsuchkopf, f rus. головка самонаведения, f pranc. tête autochercheuse, f; tête autodirectrice, f; tête d autoguidage, f … Radioelektronikos terminų žodynas

    головка самонаведения - nusitaikančioji galvutė statusas T sritis Gynyba apibrėžtis Automatinis prietaisas, įrengtas valdomojoje naikinimo priemonėje (raketoje, torpedoje, bomboje, sviedinyje ir pan.), jai tiksliai į objektus (taikinius) nutaikyti. Pagrindiniai… … Artilerijos terminų žodynas

    Устройство, находящееся на самоуправляемом снаряде (зенитной ракете, торпеде и др.), следящее за целью и вырабатывающее команды для автоматического наведения снаряда на цель. Г. с. может управлять полётом снаряда на всей его траектории… … Большая советская энциклопедия

    головка самонаведения Энциклопедия «Авиация»

    головка самонаведения - Структурная схема радиолокационной головки самонаведения. головка самонаведения (ГСН) — автоматическое измерительное устройство, устанавливаемое на самонаводящихся ракетах и предназначенное для выделения цели на окружающем фоне и измерения… … Энциклопедия «Авиация»

    Автоматич. устройство, устанавливаемое на носителе боевого заряда (ракете, торпеде, бомбе и др.) для обеспечения высокой точности наведения на цель. Г. с. воспринимает энергию, получаемую или отражаемую целью, определяет положение и характер… … Большой энциклопедический политехнический словарь

Головка самонаведения

Головка самонаведения – автоматическое устройство, которое устанавливается на управляемое средство поражения для того, чтобы обеспечить высокую точность наведения на цель.

Главными частями головки самонаведения являются: координатор с приемником (а иногда и с излучателем энергии) и электронно-вычислительное устройство. Координатор осуществляет поиск, захват и сопровождение цели. Электронно-вычислительное устройство обрабатывает полученную от координатора информацию и передает сигналы, которые управляют координатором и движением управляемого средства поражения.

По принципу действия различают следующие головки самонаведения:

1) пассивные – принимающие излучаемую целью энергию;

2) полуактивные – реагирующие на отраженную целью энергию, которую излучает какой-нибудь внешний источник;

3) активные – принимающие отраженную от цели энергию, которую излучает сама головка самонаведения.

По виду принимаемых энергий головки самонаведения подразделяются на радиолокационные, оптические, акустические.

Акустическая головка самонаведения функционирует, используя слышимый звук и ультразвук. Наиболее эффективно ее применение в воде, где звуковые волны затухают медленнее, чем электромагнитные. Головки данного типа устанавливают на управляемых средствах поражения морских целей (например, акустических торпедах).

Оптическая головка самонаведения работает, используя электромагнитные волны оптического диапазона. Устанавливаются на управляемых средствах поражения наземных, воздушных и морских целей. Наводка осуществляется по источнику инфракрасного излучения либо по отраженной энергии лазерного луча. На управляемых средствах поражения наземных целей, относящихся к неконтрастным, применяют пассивные оптические головки самонаведения, которые функционируют по оптическому изображению местности.

Радиолокационные головки самонаведения работают с использованием электромагнитных волн радиодиапазона. Активные, полуактивные и пассивные радиолокационные головки используются на управляемых средствах поражения наземных, воздушных и морских целей-объектов. На управляемых средствах поражения неконтрастных наземных целей находят применение активные головки самонаведения, которые работают по отраженным от местности радиосигналам, или пассивные, которые функционируют по радиотепловому излучению местности.

Данный текст является ознакомительным фрагментом. Из книги Руководство слесаря по замкам автора Филипс Билл

Из книги Руководство слесаря по замкам автора Филипс Билл

автора Коллектив авторов

Делительная головка Делительная головка – устройство, применяемое для установки, закрепления и периодического поворота или непрерывного вращения небольших заготовок, обрабатываемых на фрезерных станках. В инструментальных цехах машиностроительных предприятий

Из книги Большая энциклопедия техники автора Коллектив авторов

Револьверная головка Револьверная головка – специальное устройство, в котором устанавливаются различные режущие инструменты: сверла, зенкеры, развертки, метчики и др. Револьверная головка является важным составным элементом токарно-револьверных станков (автоматов и

Из книги Большая энциклопедия техники автора Коллектив авторов

Головка самонаведения Головка самонаведения – автоматическое устройство, которое устанавливается на управляемое средство поражения для того, чтобы обеспечить высокую точность наведения на цель.Главными частями головки самонаведения являются: координатор с

Из книги Большая Советская Энциклопедия (ДЕ) автора БСЭ

Из книги Большая Советская Энциклопедия (ВИ) автора БСЭ

Из книги Большая Советская Энциклопедия (ГО) автора БСЭ

Из книги Большая Советская Энциклопедия (МА) автора БСЭ

Из книги Большая Советская Энциклопедия (РА) автора БСЭ

Из книги Большая книга рыболова-любителя [с цветной вкладкой] автора Горяйнов Алексей Георгиевич

Грузило-головка Сегодня это приспособление чаще именуют джиг-головкой. Напоминает большую мормышку с крепежным колечком и стопором для приманки. Служат спиннинговые грузила-головки в основном для горизонтальной проводки мягких приманок и могут различаться по массе и